ACCl NEWSLETTER

Pattern consists of six separate sub-
patterns, each of which is based on an
equilateral triangle, fitted together
to form a hexagon,

Each triangle is formed by marking
three points on the edges of the triangle
a constant small distance from the
corners rotating in the same direction
then joining these points with straight
lines to form anmother) .
but slightly smaller
triangle,

This procedure is
repeated until the
final triangle is
small enough.

Adjacent triangles in
pattern rotate in opp-
osite directions.

Variations can be
formed by not drawing
1 or 2 of the lines or
by adding more patterns
together,

Additional variations
may be possible by
starting with triangles
other than equilateral
and not arranging for
them to be adjacent,

Program for HP 2000F TS BASIC with plotter

CPLOT

5 REM- GIVES +1 IF EVEN -1 IF ODD
160 DEF FNK(K)=(K=2%INT(K/2))*2-1
15 REM- LIMITS OF PLOTTER

2@ DEF FNP(X)=1 MAX X MIN 9999
25 ° REM- S=SIZE OF SUB-PATTERN

B9=NO OF LINES TO A SUB-PATTERN

3¢ INPUT S,B9

35. REM- COORDINATES OF CENTRE OF PATTERN
4@ INPUT X9,Y9 :

45 REM- VALUE OF PYE

5@ P1=ATNC1)*4

608 P2=P1/180

65 . REM~- PRINT SIX SUB-PATTERNS
78 FOR K=1 TO 6

84 PRINT “PLTL"

85 REM- ANGLE OF SUB-PATTERN
99 O0=K*60-30

166 B=B9 .

165 REM- CENTRE OF SUB-PATTERN
110 X=X9+S*SIN(O%*P2)

120 Y=Y9+S*COS(O*P2)

125 REM- ANT! OR CLOCKWISE

136 01=(0-68*%FNK(K))*P2

148 02=(0+6@%FNK(K))*P2

145 REM- 3 CORNER CORDINATES
150 X1=X+S*SINCOI)

160 Y1=Y+S*xCOS(CO1)

170 X2=X+S*xSINC02)

188 Y2=Y+SxC0S(02)

198 X3=X9

200 Y3=Y9

VOL 3- ISS2 JUNE 75

2095
210
220
230
249
245

250
260
270
280
290
300
310
320
325

340
345

360
378
388
385
390
395
400
410
429
430
449
450

e

REM=- WILL IT FIT ONTO PLOTTER ?
IF X1#FNP(X!1) OR Y1#FNP(Y1l) THEN 370
IF X2#FNP(X2) OR Y2#FNP(Y2) THEN 370
IF X3#FNP(X3) OR Y3#FNP(Y3) THEN 378
GOSUB 400 .
REM-MOVE ALL 3 POINTS BY INCREMENT
~ TOWARDS OTHER POINTS IN ROTATION
X@=X2-X1
X2=X2+(X3-X2)/B
X3=X3+(X1-X3)/B
X1=X1+X0/B
Y@=Y2-Y1
Y2=Y2+(Y3-Y2)/B
Y3=Y3+(Y1-Y3)/B
Y1=Y1+YQ3/B
REM- CHANGE INCREMENT
GOSUB 400
B=B-B/B9
REM~- SMALL -ENOUGH YET ?
Z@=SQRCYD*YD+XO*X0A)
IF Z@>S/10 THEN 250
PRINT "PLTT"
NEXT K
REM=- GO AND INPUT CENTRE OF NEXT PATTERN
GOTO 40
REM~- PRINT ROUTINE
PRINT USING 44@83X1,Y1
PRINT USING 4405X2,Y2
PRINT USING 4403X3,Y3
RETURN
IMAGE DDDDX, DDDD
END

STRUCTURED PROGRAMMING

P.,J.Rodman

At one time, when computers were few and far
between, and much slower than their modern count-
erparts, programmers would design their programs
to be as fast as possible, This usually resulted
in the program being so complicated, and using so
many 'tricks' as to make it completely unintell=-
igible to all but the creator, and sometimes even
to him ! If the creator then wished to make a few
additions or modifications he usually ended up
rewriting large parts of the program, This consu-
med many valuable man-hours, and if anything went
wrong with the program after it had been written
the creator was the only person who could under-
stand and correct it,

In the present day, however, computer time is
becoming cheaper and cheaper, and an inefficient
program costs little more than an efficient one
if a comparison can be made, The actual program-
ming is now the expensive part of computing. Most
man-hours lost in programming are the result of
errors (logical rather than syntactical), Methods
have been tried to save man-hours by using
special programming techniques, one of the most
important of these being the concept of structured
or disciplined programming,

This technique seems to date from a famous
letter (1) by Professor E.W.Dijkstra of the Neth-
erlands. In the letter he claimed that not only
was the GOTO , or branch, statement unnecessary,
but was, in fact, harmful! (in high level langua-
ges). Most of the programmers of the day (and
probably the readers of this article) were most
puzzled by this, as they had been brought up
writing programs with many GOTO's, branching all
over the program, both backwards and forwards.
However it was soon realised that if the program
was written in structured form, GOTO statements
would become almost redundant. By using structured
progranming techniques not only are logical errors
or 'bugs' easier to find, but are usually preven-
ted in the first place, thus cutting down enorm-
ously on the man-hours and computer time needed
for debugging. The program can be easily under-
stood and modified by others, and is self-docum=
enting (i.e. the 'flow' of the program is simple
and flowcharts should not be necessary).

The basic concept of structured programming is
that only 3 basic control structures are used in
the program, namely;

sequential statements (e.ge simple replacements)

conditional statements (e.g. if then else in
Algol)

a simple loop structure (e.ge do while in Algol)
These are illustrated in flowchart form in Fig 1.

The rectangular blocks represent sequential
statements or one of the other two structures., Thus
the structures are 'recursively'! defined and can be
nested., For example the structure shown in Fig 2 is
perfectly valid, and consists of only the 3 basic
structures,

Certain points should be noted about such
_structures. Firstly it can be seen stat the basic
structures, and in fact any composite structure,
have only one entry point and one exit point. This
means that if it is possible to write a program
‘using only the 3 basic structures, then it can be
‘divided into sections, or modules, each of which
has one entry and one exit. This not only means
that the program can be written in modular form
(perhaps with different programmers writing Aiff=
erent blocks),but error detection (and prevention)
is greatly simplified, as there is no more than
one branch out of a module. Putting it another way
once control enters a module it can only leave
through one point. Therefore tracing an error back
through the program to find its cause is a relat-
ively simple processe.

Secondly it should be noted that GOTO's become

unnecessary, and that there are no backward
branches (eliminating most of the notorious infin=-
ite loops).

The conditional statement corresponds to the
if then else statement in Algol (similarly in PL/1,
COBOL etc,). The loop structure corresponds to the
do while clause in Algol, IF ELSE in COBOL etc.
Unfortunately, languages such as FORTRAN & BASIC
do not have these constructs (at present) and it
is necessary to use the GOTO statement., However
the basic structures can be built up using GOTO's.
The concept of structured programming will be
preserved as long as the range of the GOTO is
within the structure.

The following two conditional statements are

equivalent;
Algol FORTRAN
if A< B then A :=B IF(4,LT,B)GO TO 10
else A := Cj A=C
GO TO 20
10 A =3B
20 o o o o

Similarly for the loop structure;

Alpgol FORTRAN
while A <100 do a:=A+X; 10 IF(A.GE.100)GO TO 20
A = A+X
GO TO 10
20 o & o
v
l TRUE
FALSE
SEQUENTIAL LOOP
T FALSE
4
CONDITIONAL
22 FIG. 1

It is also interesting to note that the FORTRAN
IF and DO statements are special cases of the
basic structures, e.g. ¥
IF(A.LT.B) A = B+l has the
Fig 3a,

structure shown in

and

DO 20 I = 1,N
e ® L] L] e

20 CONTINUE has the structure shown in

Fig 3b.

Finally it should be noted that it can be
proved that all programs can be written using only
the above 3 structures (2). It might be a good
idea to remove the GOTO ststement altogether from
languages such as Algol or COBOL !

A:=D A:=E
| FALSE .
TRUE
Q
FIG, 2
4
i N
A=384+1

I=14+1
. | ,
FALSE
TRUE

FIG. 3b FIG. 3a

Obviously, removing GOTO statements from a
program does not necessarily structure it, and to
structure an unstructured program is not really
worth the effort involved, It is therefore best to
start from scratch and use structured techniques
throughout the writing of the program. Meaningful
and well-placed comments are 'worth thelr weight
in gold' but too many, or badly placed comments
only tend to confuse anyone else reading the
program,

One should indent nested if and do while loops
to make the program more readable,

Meaningful variable names seem to be quite
rare in most programs. Even in Algol programs,

where up to 20 (or more) characters can be used,
one often finds statements such as;
if WS <O then TS := DS + WS +SIT;
which could have been bore descriptively written
as;
if warehousestock = O then totalstocks:=
depotstocks + warehousestocks + stockintransit;

Another important concept of structured prog-
ramming, used by a large number of experienced
programmers, is that of 'top down programming?,
Inexperienced programmers tend to attack a progr-
amming problem from the 'bottom up', That is they
design the subroutines first and the main program
is written to use the subroutines. Even worse they
try to write their program as one huge main segment
with as few subroutines as possible., This last
approach means that for very long programs one can
get do loops anf if statements ,the range of which
stretches over several pages., This makes for
tedious page turning to follow the program logic,.

One should rather start by writing the main
program first, such that it is divided into 'macro!
statements or blocks, viz. subroutine or procedure
calls, One would then proceed to attack each of
the subroutines called by the main program in the
same manner, and so on, until it is no longer
possible to call another subprogram, This is the
bottom level of the program and the program is
finished once the subroutines have been written.
The program now forms a nested, tree-like struct-
ure (e.g. Fig L),

There are several points to be noted about
this mode of programming;

(a) A1l of the blocks are written using structured
programming techniques,

(b) Once the main program is written it can be
tested by replacing the first level of subre
outines by 'program stubs'., These are dummy
subroutines which return 'contrived' results
designed to aid the debugging of the main
program. Once the main program is error=-free
the first level of subroutines can be written
and a second level of program stubs can be
used to debug them, and so on, until the
bottom level is reached.

This is an extremely efficient way to minimise

errors in the development stages,

(c) Many may argue that this is not efficient prog
ramming, and there are many unnecessary subr=

_outine calls. This may be so, but the program
was probably written in half the time, and had
half as many errors as the 'efficient! version

Sceptics may find the following quotation of

interest (3):

"This reverence for 'machine efficiency' is an

interesting phenomenon, Look out of your

window at the parking lot. Are there 300 cars
there ? Do you realise that that represents
about one million dolliars of hardware that
gets used maybe 40 minutes of the day, and
nobody writes memos to the director of trans-
portation, complaining about 'wasted machine
time"

Finally, for those who have struggled through
the article so far, the following example (repr-

“esented by Fig 4) may clarify the reader's mind.

It shows the first few levels of a program to
solve a system of simultaneous linear equations:
Ax = B, The method used is x = A""B, The program
is written in an Algol-like language, but should
be quite understandable to non-Algol programmers,

REFERENCES:
(1) E.W.Dijkstra "GO TO statement considered
harmful", Communications of the ACM. Vol 11

No .3 (March 1968) ply?

C.Bohm and G.Jacopini "Flow Diagrams, Turing

Machines and Languages with only two Formation

Rules", Communications of the ACM. May 1966
66,

g.g.Foster, Computer Architecture, Van Nostrand

Reinhold, 1970 pl66

(2)

(3)

3

main
program

begin ' /‘\
comment main program;

initialise; initialise
readcoefficientmatrix(4);
readconstants(B);

solve(x);

read- read- solve print-

coefficient constants results

matrix

printresults;
end; :

procedure solve(x);

beging

ainverse := inverse(A);

X t= multiply(ainverse,B);
end;

procedure inverse(A);
begin;

gauss;
backsubstitution;
end;

‘/””"\\\‘N\‘

inverse multiply

/\

gauss back=-
substitut-
ion

FIG, 4

THBE GYP —reeTnGs — & THE NEW

1500 COMPUTER CENTRE

See Jon Aslet's ICL 1500
Saturday July ¥219 2,30 pm

15 Martlesham Heath
Ipswich, Suffolk

/]
4
ey
/55
&
IPSWICH ¢
M5 Felixstowe v
7
Post Office
research
building S
$ =
Q
“ g
©
>~
LY
lw
o
=)
KESGRAVE
Unit 15
1500 compuber
SCHOOL
Martleshanm
Airfield
[—
Major
roadworks

Configuration;

ICL 1500 7 bit processor with 20/40 K core
8 decks 1OkC

1000 cps ptr

1000 1pm printer

10 cps monitor printer

Software, FORTRAN, COBOL, RPG etc.

IcL

Visit to ICL, All welcome

Lovelace Rd,
Bracknell, Berks

9 August 1975 2.30 pm

SOUTHERN

INDUSTRIAL
3 . — _xrEa
xs Sign for leaving
6‘%:;% Crowtharne Rd.
No% Dual c/We.
23

(&)
A
28% \70 lovelace pq
A
\)
o]y

i 13
About one mile from statlogae o floors
seen from long distance, i 1S Yop !
on its own yith large sig

e can be

ACC COMMITTEE MEETING

Immediately following the Open Day at Jon
Aslet’'s 1500 Computer Centre on July 32, /¢

LETTERS

| have been meaning to write for several months
and have finally managed to put pen to paper as it
were.

Firstly I would like to recommend International
Electronics Unlimited, I sent off an order via a
friend who was visiting the States an@ half
expected to hear nothing more but three weeks
later the parcel arrived, registered post and with
no duty to pay. Further they will accept ACCESS
credit card payment solving the problem of sending
over US dollars.

Next may I recommend 101 BASIC COMPUTER GAMES
edited by David H Ahl and published by DEC. It
lists in BASIC all the well known computer games
and some less well known ones. (£3 from 'Software
Services Dept,, Digital Equipment Co, Ltd.,
Fountain House, Butts Centre, Reading RG1 7QN; ed)

I am engaged in a project to rebuild, using
integrated circuits, the Digital Electronic Univ-
ersal Calculating Engine, DEUCE, as built in the
mid fifties by the then English Electric Company,
The DEUCE was a direct descendant of the Pilot ACE
built at the National Physical Laboratory and now
preserved in the London Science Museum. The purpose
of the project is to exactly duplicate the workings
of DEUCE in order that the features of its design
will not be lost. I have available a very compre-
hensive library of documents relating to the DEUCE
thanks to the kindness of Professor Gilles of
Glasgow University and Fraser Duncan of Bristol
University, my former tutor, who first suggested
this project. If anyone is interested in any aspect
of such a project or has any comments to make I
should be glad to hear from them,

HePufal
17C Stuart House, Burns Rd., North Carbrian,
Cumbernauld G67 2AN

PUNCH

" Tape Punching Assembly 9 punch unit for
1" tape., 8 trip coils thought to be 90V
DC, containing 7 ballraces,levers,
contacts etc. £3 Wt 2kg "

I thought this might interest some members, Its
from the catalogue of;
K.R.Whiston, New Mills, Stockport SK12 4PT
I haven't seen them but Whiston's shop is often
good value.
Secondly Lock Distribution, Neville Street,
Oldham OL9 6LF sent me the data on the MOSTEK
MK 5065P 8 bit microprocessor, Price quoted for
one off was £52, It looks a promising bit of hard=
ware with 51 basic instructions and ability to
address. 32k x 8 bits of memory.
’ Tony Cassera

K.Whiston, New Mills, Stockport SK12 L4PT are
selling some surplus Flexowriter punches (8 hole)
at £3 + 75p p&p (VAT included), catalogue No 3009,
You require motor with electromagnetic clutch and
driving electronics (90V coils),.The one I have
seems to be in good condition.

Part of my work involves development of numeric
algorithms for use on our NOVA 1220 mini. I should
be pleased to attempt to provide ACC members with
any assistance they may require on these topics,
Ce.Doran
89 Lennard Rd,, Penge, London SE20 7LY

DISPLAY

I am very interested in displays from computers
and processors such as Video Display Units and I
would be grateful if anyone could help me by
providing some data or information on practical
units or perhaps simple humble CRO ideas for data
display
M.Hewitt .
Freemen's Hall, Castle Leazes, Newcastle on Tyne

| readers know of any remaining 1620's I would be

HELP

I am trying to determine if there are any IBM
1620 machines in existence in the UK, As far as I
am aware, the 1620 was produced between 1956 and
1961, and came with various options including
disks and core sizes up to 60K characters, This
model is technically vary interesting because its
arithmetic was organised around a variable field '
decimal philosophy. Thus arithmetic operations
were performed by a table look-up method, with
each digit being stored in successive locations,
and it was possible to operate on two numbers
each up to 30,000 digits long with just one
machine instruction.

The era of decimal computers is now a long time
gone, but should not be forgotten, and thus I am
eager to restore one of these machines. If any

happy to hear from them.
Brian Anderson
Smith, Kline & French Laboratories, Herts

WANTED

Flexowriter or similar device, preferably
with paper tape reader and punch. Any condition
considered.

Bill Hughes Tel, 0376 512469
47 Collingwood Road, Witham, Essex CM8 2D%

Anyone willing to sell me a complete set of the
Algol 60 ICL Students Manual ?
P.Rutherford

Rush Common House, Abingdon, Oxon OX14 2AJ

SALE!

8K x 18 Mullard Core (type AW3805). This cons-
ists of a core stack capable of operating at luS
cycle time, in a metal case with sockets for
connections to the core, Complete with manufact-
urers data etc. £65., Also Vero Card Frame, type
3C/4LUCL/D2W1/MRL/L2G2/.5 new and in manufactur-
er's packing. Originally intended to be used
with the above.£12.,50 or £70 the pair
M.Reeve
6 Limes Ave N.Finchley London N12 8@N

Two 64 x 64 Mullard memory planes for sale.
M.Davison
26 Forester Ave, Bathwick, Bath, Avon

LIBRARY

An ACC library is to be set up for members' use.
It will cover both hardware & software document-
ation, If you have any suitable manuals or liter=
ature which you would like to donate to the ACC
library I would be grateful if you would contact
be at the address below.

We are also trying to assemble a collection of
games for general use, if you have games or other
amusing programs which you would like other people
to have please send the source either on cards or
paper tape, again to me at the address below.

In the next issue of the newsletter we will be
publishing a cetalogue of the documentation and
games in the ACC library.

Fred Doherty-Bullock

99 Overstrand Mansions

Prince of Wales Drive

London SW1l

- THE WEENY-BITTER

PROGRESS REPORT

Seem to be getting on well, main problem is
expandability. How to design something which is
useful at £50 but allows for future growth in one
way or another, This problem shows up particularly
in devising addressing schemes; an 8 bit word is
OK for a 256 word machine as you can address any
word in memory with 8 bits, whereas more bits
(if only for 'page' or 'made' are required for a
larger store = and these bits are wasted in the
small machine. We have to choose between an eff-
icient 256 word machine which can't grow and a
less efficient one which can. One idea briefly
discussed at one ACC meeting was to design an
efficient 256 word machine which could later be
connected onto a larger memory and used as a
micro=programmed CPU to generate a more powerful
instruction set.

An efficient micro machine could have a
fairly powerful set of one word instructions to
save memory by using 3 or 4 bits to refer to reg-
isters or as some form of short address.

Alternatively, it might be worth going to a 12
or even 16 bit word length serial machine. This
would allow expansion to 4 or 64k words of memory
without introducing the complication of multiple
word addresses, which complicate the control
section of the processor quite a lot, especially
if sophisticated addressing modes are used.

Anyway, to get down to the nitty-gritty of it
all, I've summarised the discussion so far below;

PERIPHERALS

"It seems to me that it is wise to build as
many 'useful! peripherals as possible before act-
ually committing yourself to a CPU o » o €g some
sort of decimal display . add an A/D converter
o« o a more complex control system in order to
operate correctly & this is where the computer
'finally' comes in " (P Maddison)

" Are we building a calculator or a domestic
robot ? o » & game & calculations machine needs
an (alpha)numeric keyboard & LED display of
several digits. A 'domestic' robot needs a clock
& relays to switch domestic appliances"

(S Thompson)

"Let's, fairly early on, define the CPU=-
peripheral interface well enough so work on CPU
& peripherals can proceed in parallel"
. (ACC meeting)
COST

"I would have thought that £50 was a little
optimistic . . 256 words only a serious design
limitation " (J Howells)

"Bi-Pak sell MSI TTL in 'reject' paks of 5 for
Sh4p or so. In my experience 30% are completely
useless, 30% only part functional but I can't find
anything wrong with the other 40%. My remarks
apply in particular to 7489, 7483, 74198, 74191,
Bi-~Pak advertise a smaller range of 'rejects'! than
they actually supply" (P Dawies)

"some of my collegues have been surprised at
the £50 , « .« incredible TTL & CMOS offer in
'Electronics Today' June 75" (S Thompson)

"Lock Distributdon are selling Signetics 2606
RAM, 256xlL, 750nS @ £3 1 off." (M Anderson)

DESIGNS
ry) J Bibby

ACC System 1

Why do you need indirect addressing when you
can address 65K of store directly? as I'm sure
that no member building his own could afford to
buy even 65K of store !

Why restrict 1O to reg O, If they were treated
as memory and a double handshake system used they
would not need their own instruction set, the
machine would be simpler to build and it would
work with any speed of store or peripheral.

Why waste time in IDL mode, why not ARM and
DISARM interrupt enables, When an interrupt occurs
‘it will cause jump to a (hardwired address) pre=-
specified address and perform 16 instructions

before it automatically recurses from where it
left off unless it performs a jump instruction as
one of the 16, This will mean having an interrupt
program counter register of 4 bits probably on the
interrupt board.The interrupt instructions could -
be a simple routine or instructions to save the
return address and contents of the registers and to
jump to a longer subroutine.
JMS could be a pseudo instruction;

load reg with program counter

jump to start of subroutine

add jump +1 to reg

save as last instruction of subroutine.

eecscoe

jump +1 + contents of program counter

Suggestion for a 16 bit 8+8 simple processor
16 bit word accessing up to 7K .
JMP jump unconditional O1N

AND mask A with (N) 10N
INC dincrement (N) 11N
Lba (N) A 02N
STA (4) N o4N
LIA (N+I) A 03N
SIA (4) N+ 1 05N
LDI (N) I 13N
LDM (N) M 12N
STI (I) N 15N
STM (M) N 14N
ADD add (N) to A 06N
SUB subtract (N) from A 07N
Mug multiply M by (N) 16N
DI divide AM by (N) 17N
ADI add N to A OOON
HLT stop 000000
NOP no operation 002000

001 skip instructions

$02 housekeeping instructions

003 " and also clear K
004 shift instructiocns

005 rotate instructions

007 inter register instructions
007 interrupt instructions

A = the accumulator register 16 bit
M = the multiplier register 16 bit
I = the index register 16 bit
C = the control sequencer 12 bit
N = a core store address 12 bit
K = the carry store 1 bit
X = a switch register 16 bit
Front Panel Controls

Reset Obey x Resume Start Stop

Single instr/cont

Core store up to 6K, peripherals on the same
highway all with locations 7000 to 7777

B) M Anderson

For a small memory of 4 to 4 K, I think that
the instruction set suggested by Mr. Reeve would
be rather inefficient, each instruction would
occupy more memory space than necessary, and
would contain redundant bits. Also, the provision
of so many general purpose registers would make
the machine expensive,

My own suggestion would be a machine with one
accumulator, and an 8 bit word length, Memory size
would be up to 4K bytes and instructions one or

two bytes long.

I) Load, Store & Arithmetic instructions

AT T TS W T 2 | - 1]
(I .)

op code Ypage address

LD Load Acc STO Store Acc
[T | | O O T U T T |
—
op code spare address

ADD Add to Acc AND And with Acc
SUB Sub from Acc OR OR with Acc
ADC Add with carry EOR Exclusive OR

II) Branch Instructions
T T T T Y |

op code ﬁgge

[U)
address

B B{%HFQ . BSI Branch & store IAR (PC)
. . | [SN T T N R)
ggﬁﬂf%ion address

BC Branch on condition

Condition Codes;
Bit 1 O Branch on

op code

condidion false

1 " " " true
Bits 2&3 00 Acc negative
01 Acec zero
10 Acc odd

11 Carry bit on
III) Input / Output

e
op code I7O port

IN input to Acc
OUT output from Acc

IV) Miscellaneous

[
N
op code spare

HLT Halt
SLA Shift Acc left through carry bit
SRA Shift Acc right through carry bit

When an instruction does not contaln a page
field, the current page is assumed . (ie bits
8-11 of the IAR (or PC) form the page address)

C) R Kirkby

A Cheap Amateur Computer

This design is largely inspired by the
article 'Instruction Set For An Amateur Computer!
in last December's Newsletter, I have received
other inspirations, but from so many sources that
I won't bother to enumerate them, I'm too fright-
ened of leaving someone out,

The machine is a single accumulator 8 bit word
system and is intended to be as cheap as possible,
and at the same time available for expansion. All
of the present instructions require two words, so
uprating to 16 bit words should be fairly simple.
The instruction set is at present fairly small,
but could be eleborated upon. Instructions are at
present executed by means of simple microprog-
ramming which is slow but I can envisage a quick
change to 'handshaking' in a crude way, which is
fast, It should not be too dear either.

M/C Instruction Set

If input and output devices are disguised as
dummy store lecations, a working instruction set
can be devised of only three classes of instruc-
tion;

Arithmetic where the accumulator and specified
data are operated on in suitable (requested)
manner, and the result placed in the accumulator.
je ACCUMULATOR := ACCUMULATOR * OTHER DATA

SET where the accumulator and specified data are
compared in a suitable (requested) manner, and
the result of the comparison used to affect the
state of a one bit register,

STORE IF where t&f the one bit register mentioned
above is 3n one state the instruction is ignored
and if in the other state the word contained in
the accumulator is placed in the specified store
location, The one bit register may be affected
during this instruction of required . i

It seemed to me that creating cummy store
would be more costly than including an ‘input!
and an 'output' instruction pair, so;

INPUT IF where the input device's word is placed
in the specified store location.

OUTPUT IF where the word in the accumulator is
read to the output device,

7

Most decisions are taken and used only once,
so for convenience the STORE IF instruction resets
the one bit decision store to the 'store! state
whatever its previous state. Because of this the
SET instruction sets the register to the 'do not
store' state if the test is unsuccesful, but, to
enable a little more flexibility in programming
if successful the register is left alone, Several
variations on this are possible.

I amgreatly taken with the 74181 as an
arithmetic unit and decision maker, mainly due to
its present low price (1.98). Lt allows over 30
varieties of logical and arithmetic operations,
and all six comparisons, to be performed more or
less automatically, and at rather less than the
cost of separate adders and comparators. Therefore
I have moulded the actual instruction set around
the 74181 instruction set,

INSTRUCTION SET

I wish to keep the use of 8 bits of instruetion
as suggested in December (ie dividing the 16 bit
word into 8 bits of address, two bits of address
mode control and six bits of instruction) to allow
for subsequent expansion. The 74181 has six bits
of input that could be conceived as defining its
function, to whit 4 bits stating function, 1 bit
defining mode- either arithmetic or logical- and
1 bit of last carry input, This would use up all
of my six bits available, except for two details;
some of the functions thus produced are duplicat-
ions of others (could be useful at a later date
to add wired-in multiplication for example), and
when the device is used in logical mode the carry
in bits are superfluous. Using one instruction
word bit for each input to define the operation
in ACCUMULATOR:= ACCUMULATOR * OTHER DATA
say allocating the bits thus;

Instr reg bit O = mode definition
n n " .

1 carry in bit
" n "2 function bit So
n 1" n 3 " n S)
" " " l+ " n Sl
" n n 5 n " SZ

n n " 6&7 not used at thié time

then if IR bit O = 1 (so that a logical function
is defined) then IR bit 1 could be used to tell
the difference between an 'arithmetic' instruction
and one of the others., Say if IR bit O = 1 and

IR bit 1 = O then the instruction is 'arithmetic’,
if IR bit O = 1 and IR bit 1 = 1 then the instr-
uction is something else., The 'something else!'
could be one of 16 choices = more than enough for
even the most exotic of this type of machine (I
can only think of 13 varieties of instruction on
a good day)

IR bits
01 2 3 4 5
0 x ¥ X X x Arithmetic operation
1 0 x x x x Logical operatio
1 1 0 x x x 8ETif
1 1 1 0 O O STORE IF
1 1 1 0o o 1 INPUT IF
1 1 1 0 1 O OUTPUT IF

*

TO BE CONTINUED ¢ o o o

These two pages can, of course, contain only
a fraction of the ideas, suggestions, comments
received over the last two months = thanks too
all those who have contributed - and keep it going,
we're still sticking too our schedule and aim to
define the machine language & basic hardware in
the next newsletter.,

?

HIGHLIGHTS FROM THE QUESTIONNAIRE RESULTS

Taken from a preliminary analysis of 98 forms
(208 sent out, about 110 eventually returned)

Age: L4% 18 to 25, 42% 26 to 45

Occupation: A very wide spread, 38% classified
themselves as Academic or Student, 17% were
‘computer engineering' or 'programming'.

What do you expect to gain from ACC membership ?:
SL% gave 'education! as their first choice, 29%
said 'enjoyment'

What do you find of most interest in the news-
letter ?: First choices were 52% hardware, 24%
software.

91% said that they were interested in the ACC low
cost processor, 32% even sald that they would
build it.

47% said that they would be prepared to contribute
to the paper design of a sophisticated hypothetical
machine,

Still trying to find a way of interpreting the
results of the last question (How good is the ACC
valued as a score between O and a maximum of 9
for the following subscription rates) but the raw
data is;

percentage replies for each category;
scores O 1 2 3 4L 5 6 7 8 9

£1.00 7 2 1 0 2 4 1 5 9 69
£€.50 7 0 1 1 0 5 7 8 21 49
£2.,00 9 O O 3 3 9 5 20 16 34
£2,50 10 2 3 5 6 10 13 16 16 17
£3,00 16 8 4 6 5 15 10 13 13 8
£3,50 28 6 8 4 1, 8 122 7 10 2
g.00 35 8 6 1w 9 7 L 9 2 2
£4,50 4% 4 22 5 5 5 5 5 2 1
£5,00 53 17 3 7 3 8 3 2 1 2

note that in each case results are percentage of
total number of questionnaires returned.

Following typing up the questionnaire sheets for
input to my 1500 at Martlesham I award Nigel
Freestone my prize of 1 hour free computer time for
providing the best filled in and neatly done form.
The Booby Prize of 10 hours free computer time goes
to G.B.Lane who confused me and the computer two
times with a mislaidout address causing the format
to blow out., (Sorry - only joking, my thanks to all
those who returned their forms even from Germany
and South Africa and I hope to extract the most
useful information for the club committee to help
provide the type of club you want,)

J Aslett

TIME
HOW TO GO ABOUT GETTING IT

If ACC members or others get together and
form into a group of about 10 and go to the local
college with computer facilities and enroll
themselves as a course (appointing one of their
number as the tutor) and for the small charge of
a night class the computer can be used by the
course members as much as they like,

SORRY

Iist of ACC committee members published in V3 Il
should have read;

I.Richardson

T.Jones

M.Reeve

R.Kirkby

BIGGIES

Control Data has announced a mass storage system
with a maximum capacity of 16000 million bytes,
equivalent to about 6400 large tape reels, makes
our 256 word processor look rather sick.

An array processor developed at University
College, London, uses 9216 interlinked microproc-
essor cells to process complex black & white im-
ages.

CAN YOU READ THIS ?2°?

Trying an experiment this month to get more
information onto the same number of sheets = the
original artwork for this issue was on A3 sheets,
giving a linear reduction by /2 , so in other
words these 8 pages started out as 16, Let me know
if you find the small pript troublesome.

mike lord

BOOKLIST

COMPUTERS, COMMUNICATIONS & SOCIETY

M.Laver £3,50 Oxford University Press
ROBOTICS
J.F.Young 1973 £6.00 Newnes-Butterworth

INTRODUCTION TO COMPUTER LOGIC
'Nagle, Carrol & Irwin £9.,90 Prentice/Hall

INFORMATION-LOSSLESS AUTOMATA OF FINITE ORDER
A A Kurmit £9.,80 John Wiley

COMPUTERS, CHESS AND LONG-RANGE PLANNING
M.Botvinnik, translated .by A.Brown
1970 SpringereVerlag Inc

Intel price cuts

Extensive price reductions have been made to
most of INTEL's product range.

Examples;
microcomputer kits;
MCS=4A £42,70
MCS=40A £45.00
MCS-8A £61,80
MCS-80A £175,00
MCS-80B £103,00
microcumputer chips;
CLOOY L bit CPU £13,48
cLou0 4 bit CPU £1lL.23
€8008 8 bit CPU (20us cycle) £20,22
C8008-=1 8 bit CPU (12.,5uS cycle) £24,71
€8080 8 bit CPU (2us cycle) £774,00
MOS memories;
P1103 1024x1 dynamic RAM £6474
C1402A Quad 256 bit dynamic SR £5,07
P2101 2564 static RAM (1lus) £3,04
P2102 1024%L static RAM (1luS) £3.04

C2107b=6 L4096x1 dynamic RAM (.35uS) £10,80

one=0ff recommended retail prices w/o VAT
from; Rapid Recall Limited .

9 Betterton Street Drury Lane

London WC2H 9BS. Tel: 01-379 6741.

AMATEUR COMPUTER CLUB NEWSLETTER
Vol 3 Iss 2 June. 175

M.Lord

7 Dordells, Basildon, Essex

tel; 0268 411125 (home)
0268 3040 x 117 (work)

