ACC

NEWSLETTER

HITS

The US magazine Popular Electronics has published
(Sep 75) details of a proposed standard for record-
ing digital computer data on a cheap cassette
recorded,

Known as the Hobbyists Interchange System, it is
designed to allow amateur computer enthusiasts to
exchange programse Simplicity, reliability and low
cost are emphasised rather than speed (approx 30
bytes/sec).

We suggest that the system is adopted by the ACC,

Format

All data 1s written in 8 bit ASCII code bytes or,
by agreement between sender and recipient, in 8 bit
object code,

Each 8 bit byte is writtem in bit serial form,
least significant bit first, followed by a single
binary O (for timing purposes).When using a stereo
recorder data is recorded onto the right hand
channel and the left hand channel is blank.

*msb ‘lsb
tape
O.},O 10101 O‘O‘} 100110 ? 0 .;%tion
byte n byte n+1

Data is recorded in 'blocks' of 1 = 255 data
bytes. Each block consists of;

- at least 32 ASCII SYN characters (synchronis-
ing code 00010110), followed by;

- a single ASCII STX (Start of Text 00000010)

- an 8 bit count word containing (im binary) the
number of true data bytes (i.e. excluding SIN,
STX, Count word, ETX & Block Check) in the
block.

-~ the actual message then follows and is termin-
ated by;

- a single ASCII ETX (End of Text 00000011)
followed by;

~ two Block Check characters. These are normally
zero but can be used to hold an error detection
count (CRC, check sum etc,). If they are used
the writer of the tape must provide a program
for the machine of interest which will read and
utilise them. This 'bootstrap' program should
appear at the front of the tape and should be
terminated by an 'end of file' block,

An End of File block is one with zero data bytes
(Count = 0)

1 block
E S
T DATA n|T 32 SYN|¥
. X X
/é 1 n count i 2

block check

LA v AT T AT —

end of file 3 2 1
block data blocks

Note that every 8 bit byte (including SYN, STX etc)
is followed by a binary O when recorded,

Recording

Each bit occupies a defined time period (2.75 mS
1s the standard but faster recording rates are
pcssible on high quality equipment for the user's
own operations), A burst of 2kHz tone is recorded
starting at the beginning of the bit time and
extending for approx 1/3 of the bit time for a 0,
2/3 for a 1.

"VOL3 ISS4 OCT 75

ARRAYS
WEENY-BITTER SIMULATOR
DATABASES

WEENY-BITTER HARDWARE (part 1)

WEERY-BITTER SIMINAR 29 Nov 7.0 P
Borough Rd Polytechnic, London SEl
COMMITTEE MEETING after the seminar

Hospital for
The Blind

data 0 — AWy

data 1 —AMVWMPHYU—WN
ki b1t time ——

To read data from the tape the tone bursts are
rectified to give square waves of different mark to
space ratio for 1's and O's., The mark-space ratio
is then determined by counting at a regular rate,
starting at the beginning of the pulse and counting
up until the end of the pulse, then counting down
at the same rate until the start of the next pulse,.
If the final count is positive the bit is a 1, if
negative it 1s a 0. This technique is extremely
tolerant of tape speed and recording parameters,

data 0O I I I
data 1 I l I

As usual one can make a trade off between soft
and hardware techniques for doing the recording
and retrieval. A minimum hardware approach uses
software generated 2kHz square wave bursts which
are connected to the cassette recorder via a simple
low pass filter, and an amplifier /rectifier to
pick the data from the recorder output and present
it to a single bit input port to the computer.
Data formatting and unformatting, generation of
the 2kHz bursts, decoding the rectified bursts into
1's and O's, receive synchronisation arnd simple
error detection is all done with software - about
300 bytes on an 8080,

i

ARRAYS

P,J,Rodman

For simple programs, the programmer only needs
simple variables to contain his program data. For
more complex programs it is convenient to have a
large, fixed amount of data storage which can be
accessed under a single variable name, usually
with an index of some sort (c.f. index sets in
mathematics). If the storage is read from it only,
it is usually called a TABLE, If the program can
write to it as well, them it is called an ARRAY,
Sometimes it is convenient to have an array which
is 2 or 3 dimensional, e.g. for a computer simulat-
ed game of chess, a 2 dimensional 8 by 8 array
could be used as a board. Arrays are fairly common
in high level computer languages such as FORTRAN
and ALGCL, but at the machine level an array must
be programmed using only primitive operations.
Implementing arrays at machine level will be disc=-
ussed after a short theoretical discussion.

A formal definition of an array (recursive) is;

A l-dimensional array is a vector whose elements
are scalars (numbers).

For n greater than one, an n-dimensional array is
a vector whose elements are (n-1)-dimensional
arrays with identical index sets.

This odd sounding definition is actually quite
straight forward. A l-dimensional array , A , can
be represented as;

A=[l I
A(l) A(2) A(3) A(n)

where A(1l), A(2), « . A(n) are simple numbers (or
storage locations). The set {1,2,3 & & n] is cal-
led the index set of array A. Array A is sald to
have n elements,

A 2-dimensional array , B , can be represented as;
.- 1 1T T~~~ _—."_[3
B(1) B(2) B(3) B(J)

where B(1),B(2) . . . B(J) are one dimensional
arrays with identical index sets (e.ge {1,2,3.. K})

€eFe B(}): l l 1 [- - -

B(3,1) B(3,2) B(3,3) B(3,K)
So that B has the overall structure;
B(1) Q.1 [B(1,2) | B(1,3) _ _ __ _ _]B(1,K)
B(2) (B(2,1) 1 B(2,2)] B(2,3) — — — _IB(2,K)
B(3) B(2,1) | B(3,2) | B(3,3 o — —_ IB(3,K)
!) / 1 i - H J‘.
B(J) (B, B[B, _ _ __ IB(J,K

The set {(myn) | m=1,2,004,J ; B=1,2,0.0,K}

is the index set of array B, and array B is said to
be a "J x K array".

This definition can be extended to n-dimensional
arrayse

These structures are obviously useful for storing
tables, matrices etc, On virtually all machines,
the main mamory is a linear memory, i.e. each loc=-
ation has two, and only two, neighbouring memory
locations (apart from the first and last locations
which have only one neighbour). Thus it is not
possible to directly implement n-dimensional arrays
for n greater than one., They are usually stored in
consecutive memory locations to simplify the map=-
ping function from the index set to the array as
stored in the memory.

For one-dimensional arrays the mapping is a simple
one, Let the index set be 1,24es.4n (e.g. as in
FORTRAN). If we wish the array to be stored in loc-
ations 1 to n of the memory, then the J-th element
of the array would be stored at location j. More
generally, if the array is to be stored in locat-
ions k to k+n-1 (i.e. n locations), then the j-th
element would be stored at location (j=1)+ke.

(This can easily be verified by "plugging in" some
values for j,n and k).

This can be extended if each element consists of
more than 1 word of memory., e.g. for 3 words per
element words belonging to the j=th element would
be at locationms

33+k=-3 , 3j+k-2 and 3j+k-1

Generally, for m words per element, the words
belonging to the j-th element would be in locat-
ions;

mj+k-m , mj+k-m+l , mJtk-l

Finally, the general equation for the j-th element
of an array with index set {p,p+1,...,q] s m
words per element, and starting in memory locat-
ion k is;
m(J-p)+k s n(J=p)+kel, . o ,m(j=-p)+k+m-1
EXAMPLE;

Write a routine to handle a 50 element, one dime
ensional array, 1 word/element, starting in locat=-
ion 320, The elements will be numbered 1,2,..,50.

Solution:

In the above notation, n=50, k=320, m=1, p=1,
q=50
The array resides in locations 320 to 369
The J-th element is
1.(j-1)+320 = §+319
We then have

1. LOAD J J IS ELEMENT REQUIRED
2. ADD NUM ADD 319

3e STORE ADDRESS

L. LOAD* ADDRESS LOAD ELEMENT J INTO ACC
5. NUM DATA 319

6. ADDRESS DATA O

(Note; the * in line 4 denotes indirect addressing.
If the machine being used has no indirect address-
ing capabilities, then ADDRESS could be loaded to
an index register and addressing done via that
register,)

For a 2-dimensional M x N array, the structure is
similar, except that instead of single words for
elements, we have an M element one-dimensional
array with N words/element, If the index set was

(3,k) J3=1,25e009M 5 k=1,2,40.4N
the location of the (i,j)th element would be

(i-1)N + (j=1) + k,

This can be extended easily to m words/element,

Similarly for a L x M x N array (3-dimensional)

' the location of the (pyqyr)th element is

(p=1)MN + (g=1)M + (r=1) + k
and so on for higher dimension arrays.

It should be noted that for n greater than one
dimensioned arrays, and one-dimension arrays with
more than one word/element, multiplication is
necessary. 1f the array sizes are an integral
power of 2 however, say 2 , then shifting a regis-
ter k places towards its most ﬁignificant bit
effectively multiplies it by 2, and so the mult-
iplication operation becomes unneccessary.

Other methods can be used, such as the Dope, or
Iliffe, vector methods, which will not be discus-
sed here (1), (2).

References and Bibliography

(1) Compiling Techniques, F.R.A.Hopgood.
Macdonald/American Elsevier Computing Monogr-
aphs.

(2) Information Representation and Manipulation
on a Computer, E.S.Page and L.B.Wilson,.
Cambridge University Press

(3) The Art of Computer Programminge. Vol 1
D.Knuth Addison=Wesley

ACC NEWSLETTER Vol 3 1Iss 4

“BEGIN"

“"COMMENT"SIMULATOR FOR WB-23;
*INTE""ARRAY'CORE[(®:10231;
""BOOL"C,Z,P;
"INTE"INPORT.,OUTPORT;

"INTE""PROC"MODE(B76,N); " "VALUE"B76,N;""INTE"B76,N;3

“"BEGIN" "INTE"P.,Q;
P:=COREINI];
"IF"B76=0"THEN"MODE: =P
"ELSE""IF"B76é=1"THEN"MODE: =

256*CORELP+1)+CORE(P)
“"BEGIN'" Q:=256%*CORE[3J+CORE[2]+P-1283

WEENY-BITTER
_SIMULATOR

"ELSE"256%COREL(Q+]1)+COPELQ]

This program, writtem in Algol 60,
simulates the operation of the WB-2. The
core of the machine 1s represented by an

L ELS Ell
MODE: ="1F"B7 €=2"THEN"Q
“END'
""END''MODE;
"PROC"PR(Q);'"VALUE"Q;"INTE'Q;
""CODE" LD $Q
ZLDR:L $@
ZJIL $162;

"INTE' 'PROC"IODER(P,Q);"VALUE"P,Q;"INTE"P,Q;
"BEGIN" "INTE"R;

"CODE" %BL $P
ZMORR
%ST $R;
IODER: =R
'""END"IODERS

“INTE""PROC"UND(P,Q);"VALUE"P,Q;"INTE"P,Q;
"BEGIN" "INTE"R;

"CODE" 2LD $P
ZAND $Q
ZST $R3
UND: =P,
‘""END'" UND:;

“INTE""PROC"XODER(P,Q);"VALUE"P,Q;"INTE"P,Q3
XODER:=10DER(P,Q)-UND(P,Q)}

“PROC"TEST(X);"INTE"XS
“"BEGIN" X:=UND(X,511);
"IF"X>25S5"THEN"
"BEGIN' X:=X-256:

C:="TRUE"
""END"
"ELSE"C:="FALSE";
P:=X<1283
Z2:=X=0
""END"TEST;

“"INTE'"PROC"NEXT;
“BEGIN'" "INTE"PC;
PC:=NEXT:=256*CORE[31+CORE(2];
PC:=PC+1s
CORE[3):=PC DIV'"256;
CORE[L2]:=UNDC(PC.,255)
"END"NEXT;

"PROC"PUSH(N);"VALUE"N;"INTE"N3
“BEGIN" "INTE"SPJ
SP:=256%CORE[SI+CORE[L4)+];
CORELSPJ:=N;
CORE[S51:=SP'"DIV'"256;
CORE[4]1:=UND(SP,255)
""END"PUSH:;

"PROC™POP(X) ;" INTE"X;
“BEGIN" "INTE"SP;
SP:=256xCORECS)+COREC4]}
X:=CORE(SPI;
SP:=SP-13;
CORE[S1:=SP"DIV"256;
CORE[41:=UND(SP,255)
“END"POP;

"INTE""PROC"ASCIICINT)"VALUE"INT;"INTE"INT]
ASCII:= "IF"INT=2"THEN"10
"ELSE""IF"INT=32"THEN"96
"ELSE""IF"INT=77"THEN"13
“ELSE"INT+32;

"INTE""PROC"INT(CASCII);"VALUE"ASCII;"INTE"ASCII:

"1F"ASCI1=1@8"THEN"2
“"ELSE""IF"ASCII=96"THEN"32
“ELSE""IF"ASCII=13"THEN"77
“"ELSE"ASCI1I1-32;

INT:=

integer array CORE(0:1023), which is
loaded with program before the simulation
begins by the procedure LOAD, A dump of
CORE is provided just before the start of
simulation, when a NOP instruction is
executed, and when the simulator halts.
The addresses of the input and output
ports are 007 and 010 respectively.

The cordition codes C,P and Z are repres=-
ented by the corresponding

variables C,P,Z, In ICL 4130 ALGOL, key
words may be represented by their first
four characters; e.g. procedure is "PROC"
integer is "INTE", The quotes araound

key words are required by the compiler,
which ignores blanks and newlines every-
where outside strings.

MODE (B76,N) interprets N as the address of
a word of CORE which specifies, directly or
indirectly, the address of the operand and
unravels it according to the top two bits
(B?6) of the current instruction to yield
the actual address of the operand.

PR(Q) 1is a code p which prints the
character represented internally by Q on
the line printer.

IODER(P,Q) UND(P,Q) XODER(P,Q) perform
the logical IOR,AND and XOR respectively of
their arguments, The pseudo-German names
are used because of a peculiarity of out
compiler which would object to the use of
the labels IOR, AND, XOR somewhere else

in the program if these were.also procedure
names,

TEST(X) sets C,P and Z according to the
value of X, Some operations (e.g. SUB) can
produce a result which overflows into the
bits above bit 8 (e.g. 0 = 1 = 111 . . 11)
80 TEST clears these high bits. Bit 8 is
used to indicate a carry, so this bit is
reset and C is set to true if bit 8 is
found to be set,

NEXT yields the address of the word pointed
out by the PC, i.e. the value of the PC,
and then increments the PC,

PUSH(N) POP(X) manipulate the stack.

ASCII(INT) yields the ASCII character code
for the internal character INT

INT(ASCII) yields the internal character
code for the ASCII character ASCII.

ACC NEWSLETTER Vol 3 1Iss L

“INTE""PROC'"INOCT:
"BEGIN" "INTE"N.,Q;,
N:=@3
Ll: ADVANCE(6);
Q:=DECODE(6)3
“IF"Q*(Q-2)=@"THEN""GOTO"L!}
L2: “IF"Q=10"THEN"INOCT:=~]
“ELSE""IF"(Q=16)*%(Q=23)>@"THEN"

INOCT reads an octal number from the

card reader. Numbers are delimited by
spaces or newlines ; excess delimiters are
ignored. If a star is read, INOCT takes
the value =1,

“"PRINT"‘‘L*ILLEGAL NUMBER READ ‘.,

‘WHILE LOADING‘L'‘',STOP

"BEGIN" N:=8*N+(Q-16)3;
ADVANCE(6) 3
Q:=DECODE(6);

YELSE"

“"IF"'Q*(Q-2)"NE"@'"THEN"

"GOTO™L2;

INOCT:=N
" END"
""END"INOCT;

"PROC'"MEMDUMP;
"BEGIN'" “INTE"J;
“"PRINT"’/F*CORE DUMP‘L2S10@‘‘;
"FOR"J:=@"STEP"1"UNTIL'"15"DO"

“PRINT"OQUTOCT(2,J),‘’"S2'"3

“PRINT"//L\';
“FOR"J1=@"STEP"I"UNTIL"1023"DO"

MEMDUMP prints a dump of the contents of
CORE.

“"BEGIN" "IF"UND(J,15)=0"THEN"
“"PRINT" “L*‘',0UTOCT(4sdJ)>

©r56° s

“"PRINT'"QUTOCT(3,COREL(JI1), “*S**

“ENDY 3
“PRINT™ - L2t
- ""END"MEMDUMP 3

""PROC"LOAD;
“BEGIN" "INTE"S,N;

LOAD reads pairs of numbers using INOCT »
and assigns the value of the second to the
word of CORE specified by the first. A
star terminates loading.

LOOP: S:=INOCT;
"IF"S==1"THEN""GOTO"R;
“IF"S*(S-1023)>@"THEN""PRINT" ‘‘L*LOADING ‘.,
“INTO ILLEGAL CORE‘L‘‘,STOP;
N:=INOCT;
“"IF'N*(N-255)>@"THEN""PRINT" *“L*ILLEGAL ‘.,
"NUMBER WHILE LOADING’L‘',STOP;
CORELS):=N’;
**GOTO'"LOOP;
R: *"END"LOAD;

“PROC"MISC(B218);"VALUE"B21@; "INT E'"B2103;

"BEGIN'" "SWITCH'"OP:=HLT,NOP,CLC,SEC,ION,IOF,RTS,RTI;

“"GOTO"OP(B21@+11;

HLT: "PRINT"““L“HALTED" , MEMDUMP, STOP;
NQOP: “PRINT'"‘“L*NOPDUMP"',MEMDUMP;
"GOTO'R:
CLC: C:="FALSE"; "GOTO"R:
SECE C:="TRUE"S "GOTO*RJ
ION: "PRINT"“* L*ION’L*"*; "GOTO"R:3
I10F: “"PRINT"““L*IQF‘L>*; ""GOTO"R;
RTB«=
RTI: POP(COREL31) s
POP(CORE[21):
R: '""END"MISC;

MISC(B210) executes one of the eight misc-
ellaneous instructions, STOP causes a
return to the operating system.

"PROC"JUMP(B21@,N,SUB); "VALUE"B210,N,SUBS"INTE"B21@,N3

**BOOL"'SUB3

"“"BEGIN' "SWITCH"OP:=GT0,GT0,G1Z,GNZ,GPL,GMI,GCS,GCC:

"GOTO"OP[(B212+11;

GTO: "1F"SUB"THEN"
"BEGIN" PUSH(CORE[21)3
PUSH(CORECL31)
"END";
CORE[31:=N"DIV'"2563
CORE[21:=UND(N,255)3
**"GOTO"R;
GIZ: “GOTO""IF"Z'"THEN"GTO"ELSE"R;
GNZ: “GOTO""IF""NOT"Z"THEN"GTO"ELSE"R;
GPL: “GOTO""IF"P"THEN"GTO"ELSE"R;
GMI: "GOTO""IF""NOT"P"THEN"GTO"ELSE'R;
GCS: "GOTO""IF"C"THEN"GTO"ELSE"R;
GCC: "GOTO""IF'""NOT"C"THEN"GTO"ELSE"R;
3 *"END"JUMP

"PROC"ISINCN) ;" VALUE"N;"INTE"N;
"IF"N=INPORT"THEN"
"BEGIN" ADVANCEC€);
CORE[NJ:=ASCII(DECODEC6))
"END";

JUMP(B210,N,SUB) executes one of the seven
Jjump instructions. If the hogleap SUB is
true, a link is first pushed on the stack
if the conditions are satisfied, N is the
destination address,

ISIN(N) does nothing unless N is the
address of the input port, in which case
it reads a character from the card
reader into CORE(N) , ADVANCE & DECODE
are system-defined procedures,

4 ACC NEWSLETTER Vol 3 Iss 4

"PROC"ISOUT(N) ;" VALUE"N;"INTE"N;
"1F"N=0UTPORT"THEN"PRCINT(COREINI1));

"PROC"OUTOCT(D;N)i"VALUE"E:N;"INTE"D:Ni
“"IF"D>@"THEN"
"BEGIN'™ OUTOCT(D-1,N"DIV"8);
PR(16+UND(N, 7))
“END';

"PROC"SINGLE(B2IZIN);"VALUE"BZIGJN;"INTE"BQ]ZDN;
"BEGIN" "INTE"Q;
"SWITCH"OP:=CLA,INC,DEC,ADC,TST.,
ISINCN) 3
""GOTO"OPI[B21@+]1;

CLA: CORECN1:=@; "GOTO"R;
INC: CORELNI:=COREINI+13 "GOTO"R;
DEC: COREIN]:=COREINI1-13 "GOTO"R3
ADC: "IF"C"THEN"CORE(N]:=COREINI+13;
prlngc "COTE"RS
INV: COREINI]:=255-COREIN1J; "GOTO"R;
SHR: $=COREINI];
“IF"UNDCQ,1)=1"THEN"Q:=Q+512;
COREIN]:=Q"DIV'2;
"GOTO"R3
SHL:s CORECN]:=CORELN1Ix*2;
R: TEST(COREINI);
ISOUT(N)

""END"SINGLE;

ISOUT(N) does nothing unless N is the
address of the output port, in which case

it prints the character in CORE(N) on the
line printer,

OUTOCT(D,K) is a recursive procedure which
outputs the D least significant digits of
N in octal,

INV, SHR, SHL3;

SINGLE(B210,K) executes one of the eight
single-operand instructions, with N as the
address of the operand.

DOUBLE(N1,N2) executes one of the eight
double-operand instructions, with N1 and N2
the addresses of the first and second oper=
ands respectively,

"PROC"DOUBLE(B210:N1;NE);"UALUE"BZIZJNI;N2)"INTE"B21Q;N1;N2;

"BEGIN" "SWITCH"OP:=MOV,ADD,SUB,AND, I OR,
"INTE"TS
ISINC(N1);
"GOTO"OP(B210+11;

MOV: CORELN2J:=CORELNI 1;

ADD: COREIN21:=COREIN21+CORELNI]1;

SUB: CORELN21]1:=CORELN21-CORELNI113;

AND: COREIN21:=UNDC(COREIN2J,CORELNI 1)
"GOTO"Rs

I0R: COREIN21:=10DER(CORELN21,CORECNI
"GOTO™R: ;

XOR: COREIN2J:=XODER(COREIN21.,CORELNI
"GOTO"R3

BIT: T:=XODER(COREIN21,COREIN11);
"GOTO"L;s

cps T:=COREIN2J-COREINI!1;

Lz TEST(T); "GOTO"RR;

R: TEST(COREIN21);

RR: ISOUT(N2)

""END"DOUBLE;

"PROC"OBEY(N);"VALUE"N; " INTE"N;

XOR,BIT,CMP;

"GOTO"R;
"GOTO"R;
"“"GOTO"R;

;
13
1)

OBEY(N) obeys the instruction which is N,

The MAIN PROGRAM initialises CORE by
setting the PC to 40, the SP to 1677 and
the rest of CORE to zero, before clearing
Cy2 & P and sitting in a loop fetching and
obeying instructions using NEXT & OBEY,

"BEGIN' "INTE"B7€,B543,B210;

"SWITCH"GROUP:=L0.Ll;L2:L3;L4;L5.L6,L7;
B76:=N"DIV" 643
BS543:=UND(N"DIV"8,7)3
B21@:=UND(N,7);
"GOTO"GROUPCB543+1 13

LO: "IF"UND(B76,1)=l"THEN"SINGLE(BQlO‘0)

"ELSE"MISC(B21@);

"“GOTO"R3

Li: DOUBLE(B21€,NEXT,0)3 "“GOTO"R;

L2: DOUBLE(B21@,MODE(B76,NEXT),0); "GOTO"R:

L3: JUMP(BEIO;MODE(B76,NEXT):"FALSE")5

. "“GOTO"R;

La: SINGLE(B210,MODE(B7 6, NEXT)); ""GOTO"R;

LS: DOUBLE(B2lG;NEXT,MODE(B76,NEXT))3
"GOTO"R; .

Lé6: DOUBLE(B210.,0,MO0DE(B76,NEXT)); '""GOTO"R:

L7: JUMP(BzlZ.MODE(B76;NEXT):"TRUE"):

s " " . ‘

R: BN QREYE I've tested the program and it seems to
"BEGIN" “INTE"J; be working correctly, but there are prob-
"FOR".J:=@"STEP"!"UNTIL"]Z23"D0"CORE[J]:= ably a few bugs left in it so I'a
“END'"; appreciate some feedback from readers who

CORE[21]1:=32; manage to get it to work. If you would

FALSE"™;
OUTPORT:=8;

INPORT:=73
"PRINT"//L'INITIAL STATE OF CORE 1S',LOAD, MEMDUMP ;
RUN: OBEY(COREINEXT1)3

"GOTO"RUN
""END"PROG;

like a paper tape of the program, please
write to me at the address below, enclos=-
ing an appropriate amount for postage and
I'11 send you one, by return of post if
possible,

ANTHONY FISHER

DEPT COMPUTER SCIENCE
UNIVERSITY COLLEGE OF WALES
ABERYSTWYTH , DYFED

ACC NEWSLETTER Vol 3 Iss 4

DATABASES

P.Grave N

The main use of a database is in a Management
Information System. Database technology is combined
with a communications network (IBM refer to this as
DB/DC} so that data can be fed into the system from
terminals situated as close as possible to the data
source -=- in offices, stockroom and on the shop
floor. The MIS uses the data to create a model of
the company. Like a model aircraft in a wind tunnel
the computer model is easier to observe than its
real life equivalent and like a game of Monopoly
experiments can be carried out without risking real
money (well, only the cost of the computer),

ICL used theilr PEARL database system to help in
the writing of computer programs. A large operating
system such as System B is full of complicated
- interactions between subroutines; by storing
details of these in a database it is easier to see
the effects of any possible design changes.

Definitions of a database vary; let us say a
database is characterised by;

1. large amounts of data
2. direct access (i.e. disc)
3. data 1s shared by different users & programs

A database represents the entities that are of
interest to the database owner by means of records,
A record 1s subdivided into fields each of which
contains a value describing some specified
attribute of the entity associated with the record, "
An insurance company might have records with fields
called NAME, ADDRESS, POLICY-NUMBER, SUM-INSURED,
BIRTH)YEAR; a particular record could contain these
values:

CALDER, J

1 HIGH ST, PUTNEY
8982506

8000

1933

The search techniques employed have to cope with
such reauests as:

DISPLAY SUM-INSURED & 99999 & BIRTH-YEAR < 1915

One way of retrieving records satisfying some
given criteria would be to search serially through
the entire database. This is fine if a large batch
of gueries are processed in one pass, but usually
takes too longe.

To reduce the size of the search an index can be
employed. The records are held in order, using a
selected field e.g. in alphabetical order of NAME,
Every n th record has an entry in the index giving
its disc address. To find the CALDER, J record,
the nearest preceeding value is found in the index
(by a smaller serial search)} ; the remainder of the
index entry gives the address to start searching
the main records., If necessary the index can itself
be indexed. The other fields in the record can also
be indexed but the lowest level index for each
field needs to have an entry for every main record.

Records may also be processed as a 'set', such as
the set of people in a department, This can be
implemented by pointers which form a chain from the
record for a particular department passing in turn
through the records of the people in that depart-
ment.

Each user of the database, whilst requiring access
to data which is common to other users, can have his
own program to do his own special processing. The
user programs can only read or write the database
by calling the central database software.

The whole database is subject to change, Within
the structure outlined above, records are added or
deleted as policies are taken or cancelled; a
policy holder may move so that the ADDRESS field
needs changing and so on. As well as all this the
structure itself may change. Experience may show

that an additional field is required in each record
to provide more information; or perhaps a new set
is to be created, containing those records which
are for WHOLE-LIFE policies. It is important to
keep as much of the changes as possible within the
database software so that those user programs which
don't need the new information need not be changed,
The user programs operate on a logical data
structure and the database software converts this
in order to access the actual physical layout on
the disc.

The interface between the user program and the
database software is via the Data Description
Language and the Data Manipulation Language. The
currently favoured standards are those developed by
the CODASYL committee and these are being implem-
ented by most major manufacturers (except IBM),

In the future we may see CODASYL give way to the
relational database proposed by Ted Codd (an IPBMer)
which has attracted much theoretical interest.

LETTERS

MAGNETIC CORE MEMORIES

1 only Mullard AW 3307 stack containing 25 planes
of 6L x 64 cores (1lx,ly, 1 inhibit, 1 sense)
nominal drive currents 220 mA. Max current through
any wire O,6A for 100mS. Max PD between any two
wires 80V, Fitted with 8 37 way and 2 50 way
Cannon plugs, Matrix plane wiring plug connections
etc. in Mullard data sheets with order, £15,00

1 only Mullard type AN 3341 stack containing about
twice as many cores as the one above but regret we
have no official data on this one other than our
own hand-written notes showing the connections to

the cannon plugs. This one contains 18 C
£25,00 annon plugs,

I would prefer to sell but will consider trading
one for a Phillips cassette recorder and possibly
exchange one for useful parts i.e. I1/C etc., #¥hat
gave you 2% Write first or phone my home after

pm.

John J Smith

7 Kettlebaston Rd Leyton
London E10 7PE

01-556 3368

THE MARSDEN MACHINE

ICL 1500 installed at 20-26 Peel St, Marsden,
W.Yorkshire on A62 Oldham/Huddersfield road., Any
ACC member welcome to drop in & chat - just phone

- 56712 first,

Machine is 4OK CPU, 2 x 4 deck clusters, 1000lpm
printer, 1000cps paper tape and 600cpm card, Now
operational !

Could members in Europe look out for RCA made
Gamma 6, 10's etc that are the same, as ICL 1500 as
I'm looking for a disc store,

J Aslett 2 Park St Nettleton Hill Golcar
Huddersfield HD? 4PB

THE GERMAN SCENE

My 12 bit machine is working well with no faults
now, While in England in June I purchased a Creed
7ERP teleprinter with paper tape punch built in,
and a Creed 5 unit tape reader, These are now conn=
ected to the computer and are working well, (I
have modified the ASR interface to work 5 unit 50
bauds.) I managed to obtain most of the listings
for the standard software (loaders, debug, assemb=
ler etc.) and have been very busy entering these

ACC NEWSLETTER Vol 3 1Iss 4

L

»f

programs and punching them as object tapes. Of
course I have had to modify all the tape formats
for 3 times 4 bit characters per 12 bit word inst=
ead of 2 times 6 bit which was the original format
with 8 channel tape. And I have added new device
drivers to convert ASCII output to Baudot for the
printer. I hope soon to have my tape cassette
connected to the machine which will speed up the
loading of programs. I have also written a number
of programs myself which are running on the machine
the big project at the moment is the writing of a
BASIC interpreter which will permit me to rum many
of my games on the machine,

By the way in one of the early copies of the
Newsletter (Vol 1 Iss 2) there was a 5 unit code
table for teleprinters and at first sight this
seems to be rather restricted especially as there
isn't a plus sign or an equals sign in the charac=
ter set., However this character set is the American
compatible one and most of the Creed teleprinters
available in the U.K., do have both plus and equals
signs in the character set and as such are much
more suitable as computer peripherals.

The printer I have here didn't have any cover and
was pretty noisy however I built a cover mostly
from hardboard with a large perspex section to view
the print and the noise level is now much more
acceptable,

I also purchased the RTTY handbook from the Radio
Society of Great Britain and it is absolutely
invaluable for setting and adjusting Creed machines,
I have also purchased a desk to stand the peripher-
als on and its now becoming quite an acceptable
installation. What I would really like added is a
video display but I think that will have to wait
for the moment.

I find the Weeny Bitter very interesting though 1
am unlikely to build it now that I have this machine
however I have worked out the basics for an emulator
50 when you begin writing programs for it I can run
them on my machine,

Ian D Spencer

LE BITTE MINISCULE

B S L B T

I must congratulate you for the exceptional
interest of the Vol 3 issue 2 of the ACC Newsletter,
As I just redesigned my own machine, I was absolute
ely enthusiastic about the 'weeny bitter' and would
bring you some comments about the project itself
and the opinions expressed in this paper,

I am afraid a £50 machine is utopic. A 256 word
memory cannot be useful if you don't have the poss-
ibility to get more data or instructions from a
'mass memory' such as a cassette, But then it would
cause an cverflow in the CPU expensel

I don't understand tne need for a decimal display
and overall, for an A/D converter (P.Madison). But,
to berin the design with peripherals is to put the
cart before the horse. It is preferable to begin
designing the CPU peripheral interface and to work
alternately on one or the other.

Since I began this letter I received your August
issue, So the weeny bitter is becoming a reality!
It's wonderful but do you think it is necessary to
define octal and binary systems and to explain the
rudiments of binary arithmetic and logic ? It would
be more profitable to justify the choice of the
instruction set which seems redundant regarding the
data (word) manipulation and poor in loop instruct-
ions (no index register, no 'count and branch!'
instruction) no rotate, no bit manipulation. It
looks like a poor man's PDP-8 !

I don't understand why there is a memory locatiomn
reserved for the accumulator as you need anyway an
actual register to do the arithmetic. Could you
clarify the mechanism of I/0 operations ? I am
surprised by the lack of specialised instructions,

About a possible peripheral for the weeny bitter
I think that even a used TTY or electric typewriter
would be too expensive, Perhaps a tape reader and
tape punch of the early 60's can fit into such a
small budget., But, when you proposed the idea of a
£50 computer, did you include I/O in the price?

7

In my own opinion, it is quite impossible to
define a useful instruction set with one 8 bit
word instruction and difficult with a 12 bit one,
Don*t emulate the PDP-8 ! I am convinced that its
success was only due to its low price, Its instr-
uction set is not a masterpiece! More and more
instructions are necessary to build a real program,
So the total number of bits used in the program
is about the same as for a 16 bit machine with a
more intelligent architecture, And, due to the
number of PDP-8's sold, many programmers and even
scientists have been marked for ever with this
'vilain canard',

Michel DREYFUS

President de 1l'Assiciation Francaise des Amateurs
Constructeurs d'Ordinateurs;

Villa 3 L2 Rue de la Barre

95880 Enghien-les-Bains France

The WB was originally conceived as a ‘demonstrat-
ion' machine, with very limited facilities, which
would be better than normal computer hardware
teaching aids and which could also be used to try
out basic programming techniques , It was origine
ally thought that it would be scrapped, and the
parts salvaged, when the constructor wanted to move
on to a 'real' mini. However during the design it
became apparent that we could design a machine
that would be capable of expansion., Hence we now
have the WB-1l, the £50 version, which is a subset
of the full WB-2.

Nevertheless, the WB~1 can perform some useful
functions, one of our members is interested in it
as an I/0 controller for a larger machine, another
toduse it to convert a 5 bit teleprinter to ASCII
code,

About the level of explanation in the newsletter
articles, this is a problem and I would appreclate
some guidance on this.

Now for the instruction set, I really must defend
this ' The 8 bit word was a basic design decision,
to reduce cost for the basic WB-1. I agree that if
you are designing a powerful machine from scratch
a 16 bit word is better (if only because it gives
You a faster machine by reducing the number of
multiple word instructions). However cost not speed
was the prime consideration,

fAn 8bit word then leads to an instruction format
or1;

- single word for non-memory instructions,

- single word containing the Op Code plus maybe
address mode bits plus one or more additional
words to give the address for memory ref
instructions,

The addressing modes used came from a suggestion
in a previous newsletter and fitted in nicely with
our design aims as it allows us to use an 8 bit
address for the WB-1l which is a natural subset of
the more powerful addressing modes used in the WB2,

The choice of Op Codes was determined by the
desire to keep the cost low while still giving a
powerful result, In fact I am extremely pleased
with the result. It is basically simple and easy to
learn while being efficient in terms of memory .
requirements for a typical program, and it does not
require too much hardware in the control logice.
Comparing it with the PDP-8 there are several
advantages;

- it is possible to perform unary operations on
data in memory without disturbing the contents of

the Acc‘(inceaentally, this is why the Acc is a
memory location; the hardware registers used in
the arithmetic unit have other things to do).

- it is possible to perform binary operations on
data in memory without disturbing the Acc if one
of the operands is a constant (e.g. ADD 3 ABC)

- it is possible to compare two items without
destroying one of them.

- there are far more data manipulation instructions,

ACC NEWNSLETTER Vol 3 1Iss 4

ED'S BIT

Thanks to those members who have been spreading
the word about the ACC. One = Ian Spencer- seems
to be trying to recruit members from as many
countries as possible.One new member has cast
.gserious doubts on the viability of our plans to
put the ACC membership records on a computer file
by giving us his name & address in the Russian

- admittedly there are no index registers as such,
but indirect addressing does the same thing.

- again there are no 'count and dbranch' instructions
such as the PDP-8 ISZ, but the function can easily
be done in. software,it takes longer but simplifles
the control logic. It is nerhaps interesting to
compare the WB & PDP-8 instruction sets for a
simple loop;

PDP-8 wB alphabet (after all, he does live there).

ADD COUNT MOV COUNTR,TEMP We've now got some small (AS5) posters advertis=-

1DA TEMP ing the ACC so if anyone would like one to stick
LOOP: one LOOP: cese up in an appropriate place ! let me know.

. ceee Question of the month; what is the PASCAL lang-

— ceee uage ?

152 TEMP DEC TEMP Computer Weekly and DEC are running a competit-

JMP LOOP BPL LOOP ion for schools with a DEC computer as prize,

ceee — Entry forms from Computer Weekly, Dorset House,
COUNT: COUNTR TEMP: Stamford St., London SE1 9LU, Closing data for the
TEMP: competition is rather close - 28 November,

5 DP-
e T e ALnt saotl o Syl Hb AGE Spectronics showed a cheap display at a recent
before the ADD COUNT instruction, the PDP-8 uses exhibition. Consists of a rotating disc , opaque
6 x 12 = 72 bits, the WB 8 x 8 = 64, A rough comp- excep; for alphanumeric characters in sequence
arison shows that the #B uses less bits for most around it. A fixed array of 15 LED are strobed at

the correct times resulting in a (curved) 15
character alphanumeric display.Assosciated with
it was a 6-key one handed keyboard - the inventor
claims that it only takes about 20 minutes to
learn to use it,

programs than the PDP-8, and slightly more than the
PDP-11, a very powerful machine that the amateur
would find very difficult to comstruct.

I can't agree that there are no bit manipulation
instructions, you can set or clear any bit or bits
(IOR and AND), or test the condition of any bit(s)
(BIT) or even invert selected bits (XOR). That

seems enough for a simple machine, mike lord

mike lord

————

7 ¢ S & 3 2 . ¢ ; .
w » O OO 0OO 00O % THE WEENY-BITTER *
ADDRESS
1,“ «DEP pra
- g 00 SO0 .LOO HARDWARE _PART |
®
sT0P g 6 6 6 & ‘ & 6 6;
Displays
addr run data c

ADDRESS BUS A0 = A7

149

to I/0 ports

DATA BUS DO - D7

ACC NENSLETTER Vol 3 1Iss 4

R3T 1
WATT i CA e CS
—s CONTROL . ARITHMETIC L CR
| ¢ UNIT) : UNIT 21N
WRITE Ma =3
e N 1 AP
RAM
75 MEMORY [
M Reg PC Reg I Reg A Reg B Reg
~ ¥ 3 x T ¥ T 1T kal W T
MIN PCIN PC+ IIN AIN BIN
DATA BUS DO - D7
SRO— . PCO
ZAD &) Switch Reg) t

INPUT / OUTPUT
Ee———————

As mentioned last time, I/O ports are treated as
though they were memory locations, so if we have,
say, a set of thumbwheel switches connected to an
input port it would have an address such as 020.
The contents of the switches could then be read
into the Acc, or added to the previous contents of
the Acc by instructions such as;

MOV 20 A
ADD 20 A

Similarly data could be sent from the Acc to an
output port at location 022 using the instruction;
MOV A 22

Note that by definition an input port sends data
to the CPU and an output port receives data from
the CPU only, an attempt to read data from an
output port into the CPU will give a result of zero.
This is particularly interesting in the case of the
single operand memory reference instructions e.g.
INC X as they first get the data from the memory
location, then modify it, and finally store the
result, As they will get zero from an output port,
the instruction;

INC 22
will result in the number 00l being sent to the OP
port @ loc 22.

Although possible, it is not advisable to give
the same address to both an input and an output
port.

Hardware Interface

All I/0 ports connect onto a common set of data
buses (see block diagram). Up to 20. ports can be
connected without adding any bufferring if the
following rules are observed;

- the bus wiring should be as short as possible,
preferably less than 2' overall.

- solid, short, earth (CV) connections must be
provided between the ports and the CPU,

- each port must vresent not more than one stand-
ard TTL load to the Address and Data buses and
the WRITE & READ control lines.,

- outputs frow the ports onto the Data bus and the
WAIT & I/0 lines must be via a standard open
collector ITL gate such as the 7401.

Address Bus lines AO - A7 are normal levels (high

= 1) , AO is the Jeast significant bit, As the
expanded version of the WB can have up to 16.
address lines, an extra line (ALO) is provided
which is '1' (High) when the address present is in
the range Q - 255. Although not necessary on the
WB-1, it is probably worth providing for this input
on any I/0 port.

The READ line is brought high (to 1) by the CPU
when it wants to get data from the memory or I/0.
It 15 only at 1 when the address information is
valid, It stays at '1' for at least O,5uS.

The WRITE line is brought high (1) by the CPU

when it wants to send data to memory or I/0., It
only goes to 'l' when both the address and the dats
are valid., It stays at '1l' for at least 0.5uS.

The I/0 line must be pulled down by an I/0O port
when it recognises its own address - and it must
remain at O fcr as long as that address is present,
regardless of whether the CPU is performing a write
or read, and of whether the I/0 port is for input
or output,

If the I/0 device (or memory) takes longer than
0.5uS to transfer data it can suspend the CPU oper-
ation by pulling the WAIT line down to C. The CPU
then pauses, remaining in the write or read state,
until the WAIT line is allowed to go high again.

The RST line is pulled down low by the CPU for
about 1mS when power is first applied, and is to
be used to reset the peripherals to the start-up
condition

ACC NEWSLETTER Vol % 1Iss 4

WAITE

P e/ L g ih—"//
onn T i/

|e—0-5.5 >

L e B © S

WA |
1 . __I

ReAd.
sore TIX 1/, R
O W R R &

" |« 05 Heo- o

POl la—s|d™>p
i A
Protocol
%

There are three basic ways of effecting an input
or output transfer;
- by using the WAIT line to stop the CPU until the
peripheral has finished.Thus for output to, say,
a punch, the command
MOV A PUNCH
would transfer the contents of the Acc to the
punch but the output port circuits would pull the
WAIT line down, stalling the CPU, if the punch
hadn't finished with the previous character.
Similarly, the command
MOV READER A
could cause the paper tape reader to reau the
next character from tape, stalling the CPU until
it had been read in.
This technique is simple but suffers from the
disadvantage that the CPU can't do any processing
at all when it is waiting for the peripheral,

- by arranging for the peripheral to '"interrupt!
the CPU when it is ready.This is probably the
most flexible arrangement and is_catered for on
the enhanced WB. (An additional INT line is prov-
ided between the CPU and 1/0 ports; and it is
pulled down to O by the interrupting device).

- by adding'status registers' to the I/0 ports.,
These status registers are additional I/0 ports,
but they handle peripheral device control rather
than data.Zxamwples are given below for a TTY
keyboard/reader and printer/punch,

TTY Keyboard/Reader
Two I/0 ports are used;
PRB is a read-only data port.
PRS is the status register and it uses the foll=-
owing bits;

B? (read only)is set to one when a character has
been received from the TTY and is present in
PRB,It is cleared when PRB is accessed by the
CPU,

BO (write only) enables the reader tc read one
character from paper tape when it is set to
one by the CPU,

B6 is reserved for an 'interrupt enable' function,

B5 (read only) is set to one when an error occurs
e.g. end of tape,

The following program shows how the CPU can inter-
leave other worh with reading a character from tape;

INC PRS

(enable reader)
(other work)

sece

LOOP: TST PRS (see 1f char has been read)
GPL LOOP (hang about)
MOV PRB A (put character into Acc)

TTY Printer/Punch

PPB is the write only punch data buffer, writing

a character into PPB operates the punch,

PPS 1s the status reg;
B?7 (read only) is set to one when the punch is
ready to accept another character.
B6 1s reserved for the 'interrupt enable',
B5 (read only) is sst to one when an error occurs

The folilowing program will copy a paper tape from
reader to punch ;

LOOPs INC PRS (enable reader)
WAITR: TST PRS (wait for rdr)
BPL WAITR
WAITP: TST PPS (wait for punch)
BPL WAITP
MOV PRB A (transfer char)
MOV A PPB (punch 1it)
GTO LOOP (and back again)
HARDVARE
Eo e

A hardware block diagram is given on page 8,
showing the major data and control paths and units.
Main differences between this and the programmers'
view of the machine (see last issue) are;

The M reg, used to hold the address of the data
in memory ref instructions such as TST X

The Instruction reg and control unit.

Division of the Data Bus into two parts; the DATA
Bus which is a 'wired-or'! connection which gathers
the outputs from memory, switch reg, I/0 etc., and
the DATA bus which is a buffered version of the
DATA bus 'or-ed' with the output of the Arithmetic
Unit.

The ¥B-1 is being built at this very moment!, but
is not yet complete, For this reason (and lack of
space) details of the control unit are being left
until the next issue = they are quite complex &
we want to be sure that everything is OK before
going into print. Schematics of the other unitsare
included in this issue., We haven't made any attempt
to produce printed circuit board layouts as they
would be extremely complex and difficult (= costly)
to make,

The #B has ended up using rather a lot of I/C
packages - mainly to reduce the component cost, In
manv places complex LSI I/C could have been used to
reduce the package count but this would have been
a rather expensive approach for the amateur.

The WB is best built onto 3 boards; Arithmetic
unit, address logic and control logic. Each board
needs to be about 8" x g" and, if you are
going to use plug/sockets for connection (the boards
could be hard-wired together) we want at least 58
connections to each board. I find the best approach
is to use plain (no copper) board pierced at 0,1"
intervals, Either thick wire or copper foil strip
should be used in a mesh layout for Ov and +5V
power distribution on each board, signal wiring by
thin insulated wire ('self fluxing' enamel copper
wire is ideal i1f you can get hold of it), Low imped=-
ance power supply connections to each IC are most
important if the machine is to perform reliably;
although not shown on the schematics, a small (0,1
to 0.01uF) capacitor should be connected between
OV & +5V at every other IC and an electrolytic
(5 - 100uF) used where the power comes in to the
board. Total power requirements for the WB-1 are
about 1.5A at 5V,

NOTES ON SCHEMATICS

Numbers shown just outside the logic elements are
the package pin numbers.

A logical '1' is ‘*high' (2.4 to 5V)

A logical '0!' is 'low' (O to 0.8V)

We have used the trick of putting a bar (T) above
a signal name if the LOGICAL LEVEL is inverted with
respect to the INFORYATION LEVEL at that point.
For example, consider bit 6 of a data word. When
the word is present on the DATA Bus then if the

10

bit 1s a '1' (INFORMATION LEVEL = 1) then the line
D6 will be high (LOGICAL LEVEL = 1), On the DATA
Bus, however,the line (D6) would be low (LOGICAL
LEVEL = 0). The bar reminds us of this,

Similarly, we have taken advantage of the fact
that most gates have a dual function and so can be
drawn in two ways. e.g. the 7400 can be considered
as a NAND gate (high = 1) or a NOR gate (low = 1)

B =

This can simplify comprehension of the circuit
function. The two circuits shown below are in fact
identical but the overall function (A and B or C
and D) is more readily understood from the right-
hand version.(At least, that's my belief).

A
—_— I’}
- c
b
WEENY-BITTER COMPONENT§
Arithmetic unit
2 x 74181 X1,2 3 x 7404 X12,15,16
4 x 7475 X3,4,10,11 2 x 7401 X13,14
2 x 7474 X19,20 2 x 7437 X17,18
1l x 7400 X5 6 x 7430 X21-26
L x 7451 X6,7,8,9 1 x 74154 X27 .
9 x 1K resistors 9 x 180 ohm resistors
8 x 390 ohm resistors

Address Eircuits & memory

2 x 2101 X1,2 1 x 7408 X11

2 x 7475 X3,4 1 x 7437 X17

2 x 74193 X 5,6 1 x 7405 X14

L x 74,00 X7 - 10 2 x 7404 X18,19

4 x 7401 X 12,13,15,16 2 x 7440 X20,21

8 x 180 ohm resistors 1l x 390 ohm resistor

Front Panel

18 x LED

8 single pole single throw toggle switches
2 single pole change-over push buttons

1l single pole 5 way rotary switch

Control circuits (approx = see text)
6 x 7474 2 x 7475
5 x 7408 1 x 7437
8 x 7400 3 x 7420
7 x 7410 1 x 7405
3 x 7404 1 x 7430
1 x 7413
7 x 1K resistors 1 x 180 ohm resistor

Arithmetic Unit

This comprises the A & B registers (X10,11 and
X3,4), two 74181's used to perform most of the
data manipulation, a gate array (X6,7,8,9) which
performs the Right Shift operation,the Or gates
which also act as buffers to drive the Data Bus
(X17,18) and the 2,C & P registers (X19,20). This
board also carries the switch register .gates (Xl},
14) and data display drivers (X15,16).

X21 to 27 take four control inputs (CA - CD) and
set up various control inputs to the shift gates
and the 74181's accordingly, They could be replaced
by a 16 word, 7 bit ROM, The coding of the CA = CD
lines corresponds to the relevant portion of the
WB instruction set (see table).

ACC NEWSLETTER Vol 3 1Iss 4

SWITH REG: ,T(sﬂ

(5 wiTtcH cPBN
For it)

oy

- Lﬁ

pS

»y

3
»

ARITHMETIC UNIT

4TS

D @

2\

L

R

bl >

o

-—

»*

el

+sSV

OV to pin 7 of X5 to X9, X12 to X26
pin 12 of X 1,2, 27, 3,4,10,11
+5V to pin 14 of X5 to X9, X12 to X26

pin 24 of X1,2,27
pin 5 of X 3,4,10

11

,11

ACC NEWSLETTER Vol 3 Iss 4

Coding of AU control inputs CA=CD

operation

inputs

CA CB CC CD

%)
o]
(9]
N
9]
N
t
=
OCOO0OOOHOOOOOKHKHKHKHO |x
Q
]

minus B
XOR B
XOR B
IOR B
AND B
minus B
rlus B

[eNeRoNoReNeo]

O

shift L
shift R

plus C
minus 1
plus 1
zero

HOHFOFOHOFOFOKHOKHO
HHOOHMHOOKHHOOHHOO
HHHHOOOOHKHHIHOOOO

o O o o S N O
OCQOO0OO0OO0OO0OHOOOODOOOOO
OHOHOOOKOKHOKKHKHO
OFOHOOOHOOKFHHOOOKM
HFOHOOOOOOKHHHFOQOOH
HFHOHOOOOOHOOKKHHO
HFHRPOQHOFOFOFOQOOOUK

(= =l =l N e N @)

The urnit can be tested by itself as follows;
first check the operation of X21 - 27 according
to the table above.
Then tie CA-CD to +5V (1) and check for high levels
from the F outputs of X1,2.With SRO at OV (0) lamps
LD2O-LD7 should be out and the Data Bus lines_DO=D?7
should be low. Connecting any of the lines DO-D7
to OV should light the corresponding lamp and make
the corresponding D line go high. The Switch Reg
gates can now be checked by connecting SRO to +5V,
enabling gates X13,14,
Next, connect AIN & BIN to +5V through 1K resistors.
The sigral on tne Data Bus (controlled by the switch
reg when SRO is high) can now be gated into the A
or B reg by momentarily connectint AIN or BIN to OV.
Operation of the 74181's and the shift-right gates
can now be checked by setting avpropriate patterns
into the A & B regs from the switch reg then
inhibiting the switch reg by connecting SRO to OV
and setting up the required code on CA-CD,
Finally connect ZIN to +5V via 1K then check the
operation of the C,2 & P reg by momentarily connect-
ing ZIN to OV,

CONNECTOR

£ED6E

+ —+ —r o3
X0 a3 X7
xi xu? xf w i ~
~ % ~ 3 : &
= 3 = = = = 2
3 PRl L a
g x Xlg ng
3 I
=) ~ 4+ ~ 4
iy »h <
R 2 X% g s X9 >
~ - ~ X -
x2 L—J : \—J § *
ke —t ——
e xS xq xn 6 x20
&> § o 3 4 N é
= [£ 2 2 2 =
+
xa7
X2 22 %23 x: x;l :
B 2 2 2 -
£ z . 2 2 £
ARITHMETIC UNIT |, A + B REC
PROPOSED LAYOVT

ADDRESS LOGIC AND MEMORY (see page 14)

This comprises the M reg (X3,4) Program Counter
(X5,6) , the Memory itself (X1,2), Address Bus
drivers (X17,20,21) , Address Display drivers (X18,
19) and miscellaneous gating circuits.

Information from the Data Bus can be gated into
either the M or PC reg by momentarily pulling MIN
or PCIN low.

Information put onto the Address Bus can be from
the M reg, or the PC reg (by making MA or PCA high)

12

or neither, in which case address lines A3 to A7
are low (0) and the state of the three low order
address lines AO to A2 can be controlled by the
control unit via lines TAO - Ta2.

The open-collector gates X12,13 transfer the cont-
ents of the Program Counter onto the Data Bus when
PCO is high. PC+ is used to increment the Program
Counter (count up). The count-down ability of the
74193's is not used.

Open collector inverters X14 are used to make a
6 input negative NAND gate giving an output AX which
goes high when A2 to A7 are all at O . This signal
is used by the control circuits,

The INTEL 2101 256 word by 4 bit RAM was chosen
as it has separate inputs and outputs. (the 2111 or
2112 could be used if some extra gates were added),
It is normally left in the READ mode and it's outputs
gated onto the Data Bus via X15,16 when required, It
is available from Rapid Recall Ltd., 9 Bettertom St.,
London WC2H 9BS as the P2101 at £3.04 plus VAT, P&P.

- s
x| x3 x1 xi iy g
o “
? § g g E %~
s | [A] B Bk
< c
N
4 F'::‘ 3 X x5 xq
1 - a >
n s) 1F 1) B
L=
3
N xS xq w3 xie
. 3 3 3 $
] ~]
2
6 X0 xn xu
¢ 3 2 §
2 = - ~ 3
ADDRESS CIRCVITS ¢ mEmMORY
PROPOSED LAYyoUT
POWER UNIT

The unit shown on page 13 will supply about
2.5A at 5V; sufficient for the basic WB plus a few
peripheral circuit ports. The five diodes can be
any rectifier capable of handling 3A , 50V. The
regulator circuit shown provides current limit
protection at about 3A current. The 2N3055 can
dissipate up to 20W under fault conditions so should
be mounted on a fairly substantial heatsink (its
collector is a earth potential so can be mounted
directly onto a chassis without insulation.). If it
is preferred the regulator could be replaced by two
or more paralleled 1/C 5V regulators.The capacitor
marked with a * may be necessary to stop oscillation
of the regulator and should be between 100pF and
O.1uF., A resistor may be fitted in series with the
rectifier bridge as shown * to reduce the dissipation
in the rerulator.

The crowbar is a most worthwhile insurance against
accidental overvoltage on the 5V supply, either from
failure of the regulator or because of accidental
connection of an external voltage. It can be tested
by replacing the 3A fuse by a 10 ohm 20W resistor,
disconnecting the output of the supply from any load,
then increasing the output voltage until the 3CR
fires, [his should happen at between 5.5 and 7 Volts.
The SCR can be any device rated at better than 5A.

INTERCONNECTION OF THE UNITS

The necessary wiring between the three units and
the lamps and switches on the front panel is shown
on page 13. Note the use of at least two connections
for each of the power supply lines OV & +5V

ACC NEWSLETTER Vol 3 1Iss 4

EDGE CONNECTOR

+.§V

L Arenox
“ v 34
¢ :
i 20,0
_jt i

r===

sen ot

2N§308S

3w OoN H|S
TRANSFORMER JRECTIFIER REGULATOR
ARITHMETIC convrroL APIRESSR
oMt uwmiT mem .
ov -
—+5V
_n——D? — - < .
D6)
~4—D5 — B
—— D4 «
AL H— D} — E;
=—=—=D2, a
+—DIl——
D@ -
—+— D7
D6 m
oS — D5
DL]
—+— D3 <
D2 g
45V +—D1
4 -
LD?—@—U— —L-Ax -
® 176
® ~+— READ
e — WRITE
B ——WAIT
— . MIR—+
ﬁh~«4@—r T MhE———1
LDg p - - PC e
= PCA—+
~-PCO =
+—Tap—+
- — IAl — L
E IA2 —1 S
RST—
- CA B T—A?—] @
. CB— - A6—| B
-1+—CcC o ——‘A5 {
—+——CD— . Al g
—— AIN —T —~— A3 ~
— BIN—- - . 8
TSRO - Al -
— cs— — AB— -
P il +—@®— LA?
- C — _—@_‘
- Z --_@_,
— Pt o
4 71N S P . S———
SD? —_— —_&"ov e
. b - —— i
Go @ —e
. ov _ ®— Lag
. —_— Ll By
. j}- S— oY
. b ~———0
. — b——0
sDd J— o, | +—
4sv AW -+—°
oV 4—®__.
+5V
ov - -

CONNECTIONS BETWEEN UNITS

to 1/0

13

CROWBRAR

®

PIN CONFIGURATION

%@

ROW
SELECT

CELL ARRAY
32 ROWS
32 COLUMNS

223
%@ﬁ@ ®

INPUT
DATA
CONTROL

COLUMN 1/0 CIRCUITS

COLUMN SELECTOR

e
ﬁ@

@ 2101 BLOCK DIAGRAM

C = PN NUMBERS

SN7400N
Quadruple 2-input NAND gate
Co)7

SN7401IN

Quadruple 2-input NAND gate
with epen coliector eutput

[

Ty 3 T
[.’“.”.‘Zl“lm l"
["l‘zlli“sl"m

1,;111 _‘IL' 7
W A

" 3 Y GND

SN7405N
Hex inverter with open collecter sutput

B

1 o1 P

SN7408N Quadruple 2-4nput AND gote

oDonDDD
;

SNTA30N ginput maND gate
o we e el

LN ENE) i EREL KL ELTHL)
SN74 40N SNT431N
Dual 4-input NAND baffer ,.@.‘"‘,"éfi"ﬂﬂm
Wl uT‘iT sl L Ty 1y]
)
) 63 I I I I BEREEE:E 0 D
SN74 7AN

SN7451N
Dusl 2-wide 2-nput AND-OR-INVEXT gates

ACC NEWSLETTER

Dual D-type edge-triggered flip-tiop

Vol 3 1Iss 4

Iy

P 2 02 93 by DS 26 DT +5v
2i01 ll*lBYlsf X! 0 1* uj n;Tlgf X2 \ s
P, Pl Piy B o) o) P P By by, o) »
A >4 e L
OV to pin 8 of X1,2,5,6 ’: 3 i 2, 112 a Doy Z N '! oo [1® : Dias u_'D’ﬁ
pin 12 of X 3,b = s)
pin 7 of X 7 - 21 At >34 so,|ix [6 ot K n_ls® p
" > 256 [DteF a3 255 ™ RS] A =D
+5V to pin 22 of X 1,2 21wy ul
pin 5 of X 3,4 pa s, FOR LI [IF-SgN A 5] o so; | n 28, M'_D'—‘
pin 16 of X 5,6 as >4 Ram T o fem asetd| kA] e B L%
oin 14 of X 7 = 21 M6 »—° h_ s e Res—d | 6 |g X5 . t>'
¢) | e, o AS
o‘ly—-'-m__ e &»r R‘Ia_?qn-.__ ¢ 72 § 7) q (3
op (y ciz Rlw 00 Ck| (68 ARlw (3
@[] 20 e "E rrl Jzo L “_n{>'7
v 48V v tsv | SV 3 170 x
) ke $2 = ‘7_|TD'.T'—‘)
) o .
WNIE 0k
- 1y o8, T ez
1’931 Tvoe
_d! 7 M A
k5
xn ; o5
- s
3
PC REG —() >>h ag
WS S
2 7e00 " |)= ™ AS
D7>—L P ap 3 N LAS
LS V
o ”
e ac [
1
,5»..'._5 416 “]-ny;
L 1
as IR
w>2{a JEL&#;
7] an L “""’_u
LOAD
'-JTHG n
5 le
2 Ve
P x6
»>+1p ap LN\
? Lihér
ra1Yc o .
i % s ;‘,;,“
S Co 1)-._'.5 1 xio
3 is e as N
Pz Pt
nlt € s 13 pt op >12{a 2 10| >
—r] xno
1 L] 5
iy 3 "’\u
4 q Fli
DI e RS 9 K2
[3 wi
LY = 4
L%
24 & I ’L\ N
- X% 271 1Y i o slje 2|3 g
X4 %o
>
Ma 3G ; Ea I LN LN
4 «
M REG A 1 I 3 I >
M P Pa ro B W 7 0 w % K
ADDRESS LOGIC s. NENORY
SH7AISN SNTAI54N 41016 tine Beceder
Quadrupls bistable latch

SN74193N

Up/Down Binary Countar

B J2 dn 200" 1817 %15

SN74181N

4 bit Arithmetic Legic Unit

“

P S P 0 W Y A

o ‘ Ay By Ay B, Ay By G I P A-B

- > 9% A

o v N
ENEHE 010101 O 833431 B3 531 0) D DYy g

AMATEUR COMPUTER CLUB NEWSLETTER
Vol 3 Iss 4 October '75

me.lord
7 Dordells, Basildon, Essex
tel; 0268 411125 (home)
0268 3040 x 117 (work)

14

+SY

